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Abstract	
Understanding	characteristics	of	3-point	 shots	 is	paramount	 for	modern	basketball	 success,	as	 in	
recent	decades,	3-point	shots	have	become	more	prevalent	in	the	NBA.	They	accounted	for	33,6%	of	
the	number	of	total	shots	in	2017-2018,	compared	to	only	3%	in	1979-1980	[1].	In	this	paper,	we	
aim	at	better	understanding	the	connections	between	the	type	of	3-point	shooting	(catch-and-shoots	
and	pull-ups)	and	the	timing	for	shooting,	using	two	distinct	space-time	models	of	player	motion.	
Those	models	allow	us	to	identify	individual	behavior	as	a	function	of	specific	defensive	settings,	e.g.	
shot-behavior	when	a	player	is	guarded	closely.		We	assess	our	models	using	SportVU	data	for	specific	
NBA	players	and	our	code	is	open-source	to	enable	more	players	and	teams	explorations,	as	well	as	
to	support	further	research	and	application	of	those	models,	beyond	basketball	and	sport.	

1. Introduction	
When	the	3-point-line	was	introduced	in	1979,	on	average	2.8	shots	were	taken	per	game.	Since	then,	
this	number	increased	roughly	by	a	factor	of	ten,	up	to	~27	shots	per	game	[2].	The	influence	of	3-
point	 shots	 has	 thereby	 radically	 changed	 the	 NBA	 and	 has	 become	 a	major	 asset	 for	 the	most	
successful	 teams.	 An	 illustrative	 example	 are	 the	 Golden	 State	Warriors	 for	whom	3-point	 shots	
following	a	counter-attack	were	decisive	during	the	2017-2018	season.	They	won	that	season	taking	
654	3-point	shots	in	the	first	seven	seconds	after	a	change	of	possession	for	a	success	rate	of	43%		
[3].	 Understanding	 the	 factors	 which	 influence	 the	 3-point	 performance	 is	 therefore	 extremely	
valuable	as	illustrated	by	either	predictive	or	descriptive	carried	out	in	sports	analysis.	

Our	work	relates	to	players’	influence	zone	models,	and	their	dependence	on	players’	velocity.	In	[4],	
[5]	and	[6]	for	each	player	a	dominant	region	was	calculated	using	Voronoi	tessellation,	adapting	the	
metric	using	different	motion	models	adapted	to	the	players'	dynamics.	Fernandez	and	Bornn	used	
statistical	techniques	to	characterize	players’	space	occupation	[7].	Other	investigations	focused	on	
events	occurring	in	a	match,	such	as	passes	or	shots.	For	instance,	different	methods	were	developed	
to	 predict	 shooting	 and	 passing	 possibilities	 in	 basketball	 [8],	 or	 describing	 important	 plays	 in	
football	matches	[9].	A	different	analysis	tool	[10]	based	its	assessment	of	football	passes	on	space	
occupation	models.	Several	studies	are	related	to	shot	performance	in	basketball:	[11]	proposed	an	
interface	allowing	to	compare	shooting	performance	from	different	players;	[12]	introduces	a	metric	
associated	with	the	possible	number	of	points	scored	in	an	action;	[13]	describes	a	statistical	study	
on	 the	 influences	 of	 different	 factors	 which	 influence	 3-point	 performance	 and	 tries	 to	 classify	
shooters	behavior;	Finally,	[14]	introduces	two	metrics	to	respectively	characterize	shot	quality	and	
shot	ability.	
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In	this	paper	we	aim	at	better	understanding	3-point	shots	in	basketball,	as	those	are	frequent	and	
decisive	situations	during	NBA	games.	In	particular	we	focus	on	catch-and-shoot	and	pull-up	shots	
and	 their	dependence	on	defense	settings.	We	 first	 introduce	our	methodology	 to	extract	3-point	
attempts	 (discrete	 events)	 from	 SportVU	 spatio-temporal	 data	 (players	 and	 ball	 position	 time-
series).	We	 then	present	our	 space-time	models	designed	 to	quantify	available	 space	 for	a	 single	
player	relative	to	the	space	occupied	by	other	players.	One	of	our	models	measures	only	the	distances	
between	players	(static	model,	Figure	2	(a)),	while	the	other	one	takes	into	account	the	speed	and	
direction	of	the	players	(dynamic	model,		Figure	2	(b)).	Those	two	models	allow	us	to	characterize	
defensive	dynamics	and	 to	analyze	 its	 impact	on	3-point	efficiency.	All	our	code	and	analysis	are	
available	 as	 an	 open-source	 project	 https://github.com/amigocap/MecaSportStats/	 to	 support	
further	research	and	application	of	those	models.	

2. Extracting	Pull-up	and	Catch-and-Shoot	Data	from	SportVU	
Our	study	relies	on	motion	data	of	player	and	ball	positions	during	632	matches	from	the	2015-2016	
NBA	season,	supplied	by	STATS	SportVU.	We	were	able	to	detect	3-point	attempts	by	tracking	back	
the	ball	paths	that	crossed	a	circular	horizontal	surface	of	radius	5	feet	above	the	basket	(at	10	feet	
height)	 and	 looking	 at	 the	 position	 of	 the	 latest	 ball	 owner	 at	 shot	 time.	 Figure	 1	 illustrates	 the	
distribution	of	such	shots	(circles)	attempted	by	Stephen	Curry.	Shot	time	was	defined	as	the	time	
just	before	the	ball's	vertical	angle	was	higher	than	70	degrees	tracking	back	from	the	moment	ball’s	
height	reaches	10	feet.	Figure	1	distinguishes	hits	and	miss	shots	(respectively	blue	and	red)	which	
were	differentiated	by	evaluating	the	trajectory	of	the	ball	and	its	intersection	(or	not)	with	the	plane	
of	the	basket.			

	

Figure	1:	380	Curry’s	shots	from	Season	2015-2016.		Blue	dots	represent	successful	shots	location	and	
red	ones	miss	shots	location.	Black	segments	represent	the	distance	of	the	closest	defender.	

After	identifying	3-point	attempts,	we	differentiate	two	subclasses	of	shots,	catch-and-shoot	and	pull-
up	shots.	A	catch-and-shoot	shot	consists	of	the	play	where	a	player	receives	a	pass	and	shoots	less	
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than	two	seconds	after	the	pass	without	dribbling.	Conversely,	a	pull-up	shot	is	a	shot	taken	after	a	
dribble.	To	differentiate	these	shots,	we	had	to	set	the	release	time	which	is	the	delay	between	the	
time	the	player	catches	the	ball	(𝑡"#$"%)	and	the	ball	releases	the	shooter’s	hands	(𝑡&%'$).	To	do	so,	we	
determine	the	time	the	shooter	catches	the	ball	by	looking	at	when	the	ball	was	within	1.6	feet	of	the	
player	for	the	first	time.	Then	a	shot	was	considered	as	catch-and-shoot	if	release	time	was	less	than	
2	seconds	and	if	the	shooter	did	not	dribble	before	shooting,	e.g.	if	the	ball	did	not	pass	under	2	feet.	

As	a	result,	we	found	26	332	valid	shots;	we	discarded	shots	with	noisy	or	data	gaps.	72%	of	these	
shots	were	catch-and-shoot	ones.	We	found	9136	hits	and	17196	misses,	corresponding	to	an	overall	
success	rate	of	34,7%.	We	obtained	a	catch-and-shoot	success	rate	of	36%	against	31,5%	for	the	pull-
up	ones	which	is	consistent	with	previous	studies	[15].		For	all	these	shots,	we	recovered	the	position	
of	the	shooter	and	his	closest	defender	three	seconds	before	the	shot	in	order	to	evaluate	several	
features	such	as	the	distance	of	the	closest	defender	at	the	shot	time	illustrated	by	black	segments	in	
Figure	1.	This	quantity	is	useful	to	characterize	the	opening	of	a	shot	and	allows	to	compare	to	the	
definitions	of	 the	NBA	stats	website	 [16]	defining	4	 levels	of	opening	 for	a	 shot	according	 to	 the	
distance	of	the	nearest	defender:	from	0	to	2	feet	it	is	a	very	tight	shot,	from	2	to	4	feet	it	is	a	tight	
shot,	from	4	to	6	feet	it	is	an	open	shot	and	more	than	6	feet	it	is	a	wide-open	shot.	

3. Players	Occupation	Models	
To	identify	the	occupation	zones	of	a	player,	one	needs	to	take	into	account	the	positions	of	all	players	
from	both	teams.	The	simplest	approach	is	to	determine	for	every	point	in	space	the	closest	player.		
This	 allows	 to	 subdivide	 the	 court	 into	10	Voronoi	 cells,	 defined	as	 follows:	 a	point	belongs	 to	 a	
player’s	cell	 if	and	only	if	 it	 is	closer	to	the	player	than	to	any	other	player	[17].	This	approach	is	
however	limited	by	its	discrete,	binary	nature	and	does	not	account	for	other	players’	orientation	and	
inertia	(i.e.	direction	and	motion).	

	
(a)	

	
(b)	

Figure	2:	 Occupation-maps	 calculated	with	 (a)	 static	model	𝛿&)#"*(𝑥, 𝑦)	 and	 (b)	 dynamic	model	
𝛿$01*(𝑥, 𝑦)		at	each	point	of	the	court.	Black	lines	represent	Voronoi	diagrams.	Taking	into	account	
inertia	best	fits	with	the	intuition	that	offensive	player	(1)	will	reach	the	area	inside	the	green	circle	
before	 the	 defensive	 player	 (2).	 An	 animated	 version	 of	 the	 dynamic	 model	 is	 available	 at	
https://amigocap.github.io/MecaSportStats/video.mp4.	
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3.1. Occupation	Map	
We	introduce	a	continuous	measure,	by	taking	into	account	the	relative	distance	of	a	point	to	a	player.	
This	quantity,	𝛿&)#"*(𝑥, 𝑦)	is	calculated	as	the	difference	between	the	distance	𝑑	from	the	point	(𝑥, 𝑦)	
to	the	closest	player	and	the	distance	from	the	same	point	to	the	closest	opponent,	

	 𝛿&)#"*(𝑥, 𝑦) = 𝑑"4'&*&$	'))'6*6$(𝑥, 𝑦) − 𝑑"4'&*&$	)4#8*9(𝑥, 𝑦)	 (1) 	

This	quantity	does	therefore	not	only	take	into	account	the	distance	to	a	player,	but	also	the	fact	that	
only	players	of	the	opposite	team	will	dispute	the	control	of	a	certain	area.	On	the	boundaries	of	a	
Voronoi	cell	between	players	of	different	teams	the	value	of	𝛿&)#"* 	is	per	definition	𝛿&)#"* = 0.	By	
calculating	 𝛿&)#"* 	 for	 each	 point	 of	 the	 court	 we	 were	 able	 to	 determine	 an	 occupation-map	
describing	 the	 occupation	 of	 the	 court	 by	 the	 two	 teams.	 We	 show	 an	 illustration	 of	 such	 an	
occupation-map	in	Figure	2	(a).	

3.2. Dynamic	Players	Occupation	Model	
The	previous	 approach	gives	 a	 straightforward	way	 to	quantify	how	players	occupy	a	basketball	
court.	However,	it	does	not	take	into	account	that	players	have	inertia	(i.e.	players	in	motion).	Clearly,	
for	a	fast-moving	player,	it	is	more	difficult	to	control	the	area	behind	him,	and	some	delay	is	induced	
by	the	fact	that	players	have	a	finite	force	and	can	therefore	not	instantaneously	change	their	velocity	
to	a	different	value.	 	It	is	thus	necessary	to	develop	a	model	characterizing	the	acceleration	of	the	
players.	However,	the	distance	to	a	point	does	not	fully	define	the	control	of	a	point,	but	it	is	rather	
the	 time	 it	 takes	 for	a	player	 to	reach	 the	point	which	defines	 the	controlled	area.	Therefore,	 the	
boundaries	 between	 a	 defense-controlled	 zone	 and	 an	 attack-controlled	 zone	 are	more	precisely	
defined	by	a	quantity	𝛿$01* ,	

	 𝛿$01*(𝑥, 𝑦) = 𝑡"4'&*&$	'))'6*6$(𝑥, 𝑦) − 𝑡"4'&*&$	)4#8*9(𝑥, 𝑦)	 (2) 	

where	𝑡"4'&*&$	)4#8*9 	is	the	time	it	takes	for	the	closest	attacker	(in	seconds)	to	join	the	point	(𝑥, 𝑦),	
and	𝑡"4'&*&$	'))'6*6$	the	same	time	for	a	defender.	In	the	unphysical	case	of	players	with	zero	mass,	
or	infinite	force,	this	𝛿$01* 	should	behave	as	𝛿&)#"* .	However,	inertia	is	expected	to	change	this.	The	
model	we	use	 to	determine	 the	 time	 is	 similar	 in	 spirit,	 but	not	 in	detail	 and	 implementation,	 to	
previously	 investigated	models	 [4],	 [5]	 and	 [6].	 In	 particular,	 the	 fact	 that	we	 have	 an	 analytical	
solution	for	the	time-interval	makes	its	implementation	fast	compared	to	iterative	procedures	such	
as	 the	 one	 proposed	 in	 [5],	 which	 makes	 the	 current	 procedure	 more	 tractable	 for	 real-time	
applications.	Details	on	time	calculation	are	available	in	the	Appendix.	

With	𝛿$01* 	we	can	again	determine	an	occupation-map,	one	of	which	 is	 illustrated	 in	Figure	2(b).	
When	comparing	both	maps	Figure	2(a)	and	2(b)	clear	visual	differences	are	observed.	Consider	for	
instance	 the	 position	 on	 the	 court	 indicated	 by	 a	 green	 circle.	 In	 a	 simple	 (non-inertial)	 model	
considering	only	 the	distance	of	 the	players	 to	a	point,	 this	part	of	 the	 court	 is	 controlled	by	 the	
defensive	team.	However,	in	reality,	it	is	the	offensive	player	(1)	which	will	arrive	at	this	point	before	
the	player	(2)	since	the	velocity	of	player	(1)	is	directed	towards	this	point	while	the	defensive	player	
(2)	 is	moving	 away	 from	 this	 point.	 This	 example	 clearly	 shows	 how	 the	 inertia	 of	 the	 different	
players	can	be	important	in	the	determination	of	the	influence	zones	of	the	teams.	
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4. Offset	Induced	by	Inertia	Between	Space	and	Time	
We	now	apply	our	models	to	characterize	space	and	time	free-space	dependencies.		To	achieve	this,	
we	first	calculate	𝛿&)#"* 	and	𝛿$01* 	at	the	player	position	;𝑥)4#8*9, 𝑦)4#8*9<	as	

	 𝛿&)#"*
∗ = 𝛿&)#"*;𝑥)4#8*9, 𝑦)4#8*9< = 𝑑"4'&*&$	'))'6*6$;𝑥)4#8*9, 𝑦)4#8*9<	 (3) 	

	
	 𝛿$01*

∗ = 𝛿$01*;𝑥)4#8*9, 𝑦)4#8*9< = 𝑡"4'&*&$	'))'6*6$;𝑥)4#8*9, 𝑦)4#8*9<	 (4) 	

Those	calculations	allow	us	to	represent	the	evolution	of	players’	free	space	(Figure	3).	A	clear	trend	
is	that	free	space	𝛿$01*

∗ 	lags	free	space	𝛿&)#"*
∗ .	This	difference	clearly	shows	how	inertia	introduces	a	

delay	in	defensive	play.	When	a	defender	observes	that	the	offensive	player	he	is	guarding	changes	
his	position,	he	needs	to	adapt	his	velocity	to	adjust	to	the	best	possible	defensive	position.	The	time	
lag	𝜏? 	is	of	the	order	of	0.3	seconds.	

	

Figure	3:	Example	of	Kawhi	Leonard’s	free	space	evolution	during	an	8s	time	sequence	of	the	game	
opposing	San	Antonio	Spurs	to	Washington	Wizards	that	played	on	November	4,	2015.	Comparison	
of	free	space	measured	using	𝛿&)#"*∗ 	(red)	and	𝛿$01*

∗ 	(blue).	

The	precise	value	of	 the	delay	 is	obtained	by	measuring	 for	which	value	𝜏? 	 the	maximum	of	 the	
correlation	coefficient	𝜌? 	is	observed.	This	correlation	coefficient	is	defined	as,	

𝜌?(𝜏) =
⟨𝛿&)#"*B (𝑡 + 𝜏)𝛿$01*B (𝑡)⟩
⟨𝛿&)#"*BE ⟩F/E⟨𝛿$01*BE ⟩F/E

	
(5) 	
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with	𝛿′ = 𝛿 − ⟨𝛿⟩	and	where	⟨. ⟩	denotes	a	time-average.	The	maximum	of	the	correlation	is	shown	in	
Figure	4(a).	The	maximum	correlation	is	found	to	be	𝜏? = 0.3𝑠.	It	thus	takes	on	average	0.3𝑠	for	a	
defensive	player	to	adapt	his	velocity	to	the	velocity	of	the	offensive	player	just	before	a	3-point	shot.	

We	can	further	compare	this	specific	measure	of	the	adaptation	time	of	a	defender	to	approach	the	
shooting	 attacker	 to	 a	 global,	 team-based	 delay.	 Indeed,	 the	 necessity	 to	 rapidly	 approach	 an	
offensive	 player	 starting	 his	 shot	 leads	 probably	 to	 a	 much	 faster	 adaptation	 to	 the	 defensive	
positions	than	the	global	delay	of	the	full	team	with	respect	to	its	inertia-corrected	position.	In	order	
to	check	this	we	computed	the	temporal	correlation	of	𝛿&)#"* 	and	𝛿$01* 	as	in	Equation	(5),	but	now	
not	only	for	the	distance	to	the	closest	defender	to	the	holder	of	the	ball	but	computing	the	maximum	
correlation	between	the	full	occupation	map	such	as	the	one	in	Figure	1(a)	and	the	inertia-corrected	
occupation	map	(cf.	Figure	1(b)).	This	was	performed	for	every	event	during	a	quarter	of	the	game	
in	Figure	4(b)	and	the	maximum	correlation	obtained	was	τM = 1.26𝑠,	where	the	overline	indicates	
that	a	global	measure	is	considered.	

(a)	 (b)	

Figure	4:	 (a)	Time-correlation	between	⟨𝛿&)#"*∗ ⟩	 and	⟨𝛿$01*∗ ⟩,	 representing	offensive	player’s	 free	
space	evaluated	3	seconds	before	a	3-point	shot.	(b)	Global	correlation	between	the	occupation	map	
measured	with	𝛿&)#"* 	and	𝛿$01* 	(such	as	the	occupation	maps	in	Figure	1(a)	and	(b),	respectively).		
The	result	is	obtained	by	averaging	over	all	the	events	during	one	quarter	of	a	game.	

5. Characterizing	Free	Space	and	3-point	Shots		
This	section	uses	the	previously	introduced	occupation	models	to	analyze	and	compare	shooters’	
behavior	before	3-point	attempts.	

5.1. Free	Space	Evolution	Before	a	3-point	Shot	
Figure	5(a)	and	5(b)	respectively	show	the	evolution	of	𝛿&)#"*

∗ 	and	𝛿$01*
∗ 	three	seconds	before	and	

one	second	after	50	randomly	chosen	3-point	shots	(grouped	either	by	pull-up	shots	or	catch-and-
shoot	ones).	Two	different	trends	can	be	noticed	between	these	shots.	Before	shooting,	a	catch-and-
shoot	shot	requires	substantial	free	space	for	the	shooter	who	needs	time	to	both	receive	the	ball	and	
shoot	while	pull-up	shots	only	require	time	to	shoot.	This	is	why	catch-and-shoot	curves	generally	
lay	above	pull-up	ones	 in	 this	representation.	Moreover,	pull-up	shots	reveal	an	oscillation	 in	 the	
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player's	free	space	as	he	is	dribbling,	while	it	appears	that	before	a	catch-and-shoot	shot	the	shooter	
was	already	free	so	his	free	space	only	decreases	before	the	shot.	

(a)	
	

(b)	

Figure		5:	Evolution	of	50	shot-free-space	indicators	calculated	with	the	static	model	𝛿&)#"*
∗ 		(a)	and	

dynamic	model	𝛿$01*
∗ 		(b)	during	the	interval	ranging	from	3	seconds	before	to	1	second	after	the	shot.	

The	shot	takes	place	at	t=0.	Pull-up	shots	and	catch-and-shoot	ones	are	differentiated.	

While	we	mainly	performed	a	visual	analysis	to	separate	shots,	we	now	divide	catch-and-shoot	shots	
into	two	subclasses	thanks	to	the	k-means	clustering	algorithm.	We	then	plot	the	average	evolution	
of	 shooter’s	 free	 space	 for	 the	 two	catch-and-shoot	 classes	 and	 for	pull-up	 shots.	The	 results	 are	
available	in	Figure	6.	As	expected,	pull-up	shots	reveal	a	global	decrease	as	the	shooter	dribbles	over	
time	while	catch-and-shoot	shooters	need	some	free	space	to	have	time	to	receive	the	ball.	However,	
two	behaviors	stand	out	between	players	who	are	already	free	three	seconds	before	the	shot	and	
those	who	have	to	move	to	free	themselves.	Considering	the	two	ways	of	evaluating	free	space	we	
can	see	that	the	global	trend	is	the	same,	but	the	time	offset	calculated	in	section	4	appears	again.	

	
(a)	 (b)	

Figure	6:	Average	evolution	of	a	shooter's	free-space	measured	by	(a)	𝛿&)#"*∗ 	and	(b)		𝛿$01*
∗ 	before	a	

3-point	attempt.	Shots	are	differentiated	into	three	subclasses:	pull-up	shots,	catch-and-shoot	shots	
where	the	shooter	has	free	space	for	a	long	time	and	catch-and-shoot	shots	where	the	shooter	has	to	
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free	himself	from	opponents.	

5.2. Free	Space	and	3-point	Shot	Efficiency	
As	explained	in	section	2,	the	opening	of	a	shot	can	be	quantified	thanks	to	the	distance	to	the	closest	
defender.	Does	this	remark	hold	if	we	take	into	account	the	free	space	of	the	player	at	the	time	of	the	
shoot	defined	as	𝛿$01*

∗ (𝑡&%'$)?	We	have	computed	the	evolution	of	success	rate	with	shooter’s	free	
space	at	a	shot	time	using	a	moving	average	procedure	and	the	results	are	shown	in	Figure	7.	Those	
results	are	similar	to	the	results	by	[18]	(for	Figure	7(a))	and	confirm	that	6	feet	is	a	key	distance	for	
successful	shots.	The	trend	in	Figure	7(b)	is	the	same:	the	more	time	a	defender	needs	to	join	the	
shooter,	 the	more	 efficient	 the	 shooter	 is.	 The	 equivalent	 of	 6	 feet	 in	 free	 space	 calculated	with	
𝛿$01*
∗ (𝑡&%'$)		is	0.4s:	if	the	closest	defender	is	within	0.5s,	the	shooter’s	accuracy	decreases	drastically.	

(a)	
	

(b)	

Figure	7:	(a)	Shot	efficiency	as	a	function	of	maximum	available	space	𝛿&)#"*
∗ 	at	the	release-time	of	

the	ball.	If	the	closest	defender	is	within	4	feet,	the	shooting	percentage	is	27,9%,	while	it	goes	to	33,6%	
if	he	is	within	8	feet.	(b)	Shot	efficiency	as	a	function	of	maximum	available	time	𝛿$01*

∗ (free	space)	at	
the	release	of	the	ball.	Around	t=0.4s	a	significant	change	in	behavior	is	observed.	

	
5.3. Comparing	Catch-and-shoot	Shooters	
We	have	seen	that	catch-and-shoot	shooters	need	a	certain	amount	of	free	space	to	receive	the	ball	
and	 shoot.	One	key	question	 is:	how	does	 this	 free	 space	 influence	 the	player’s	 behavior	 once	 they	
receive	 the	ball?	The	 correlation	between	 release	 time	and	 free	 space	at	 the	 catch	 time	 is	 a	 good	
indicator.	But	in	that	case,	it	is	more	valuable	to	use	𝛿$01*

∗ 	to	calculate	free	space	to	take	into	account	
whether	a	defender	is	moving	in	the	shooter’s	direction	at	catch	time.	Figure	8	shows	for	16	different	
players,	 ordered	 by	 success	 rate,	 the	 link	 between	𝛿$01*

∗ 	at	 catch	 time	 and	 release	 time.	We	 can	
remark	that	players	can	have	a	similar	success	rate	but	have	different	behavior.	For	instance,	Korver	
does	 not	 seem	 to	 adapt	 his	 release	 time	 to	 the	 free	 space	 he	 has	 at	 catch	 time,	while	Matthews,	
Nowitzki	 or	 Thompson	 clearly	 take	 more	 time	 if	 they	 are	 more	 free	 when	 they	 catch	 the	 ball.	
Moreover,	this	figure	reveals	that	players	like	Porter	or	Russell	only	shoot	if	𝛿$01*

∗ (𝑡"#$"%)	is	superior	
to	0.5s	while	Curry	or	Korver	take	shots	even	if	they	are	closely	guarded.	Finally,	let’s	note	that	Kobe	
Bryant’s	release	time	can	be	really	high	even	if	his	free	space	at	catch	time	is	low.	This	represents	the	
fact	that	he	shoots	even	when	a	defender	is	very	close	to	him.	
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As	mentioned	in	section	2,	shot	difficulty	can	be	measured	by	the	opening	of	a	shot	e.g,	the	distance	
of	the	closest	defender	𝛿&)#"*

∗ 	at	the	shot	time.	However,	we	can	refine	the	shot	characteristic	looking	
at	release	time	to	compare	players’	behavior	and	check	if	players	shoot	quickly	or	not	and	if	they	take	
open	or	closed	attempts.	Figure	9	reveals	different	behaviors.	Players	like	Ilyasova,	Gordon	Johnson,	
and	Leonard	only	take	open	shots	(closest	player	at	least	at	4	feet).	Players	with	a	success	rate	higher	
than	40%	globally	shoot	quicker	than	the	median.	This	suggests	that	good	shooters	need	to	be	able	
to	 shoot	 rapidly	 after	 receiving	 the	 ball.	 Among	 these	 players,	 we	 can	 focus	 on	 Leonard	 and	
Thompson	noting	that	Thompson's	attempts	can	be	very	tight	or	wide-open	for	the	same	release	time	
while	Leonard	mainly	 takes	 shots	when	 the	nearest	defender	 is	 4	 to	8	 feet	 away	 from	him.	Two	
players	can	be	mentioned	as	they	have	a	particular	behavior.	Looking	at	Russell’s	distribution	we	can	
note	 that	 he	misses	 almost	 all	 the	 shots	 he	 tries	 if	 the	 nearest	 defender	 is	within	 6	 feet	 of	 him.	
However,	he	still	has	a	global	percentage	of	33%,	therefore,	he	would	benefit	from	taking	only	wide-
open	shots.	Then	Bryant	has	also	a	particular	behavior	as	most	of	his	shots	are	taken	with	the	player	
closer	than	6	feet.	
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Figure	8:	Shot	release	time	function	of	free	space	at	catch	time	calculated	with	𝛿$01*
∗ 	for	16	different	

players	ordered	by	success	rate.	Dashed	lines	show	median	release	time	and	median	𝛿$01*
∗ 	of	all	catch-

and-shoot	shots.	The	regression	lines	show	how	players	adjust	their	release	time	according	to	the	free	
space	at	the	catch	time.	
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Figure	9:	Distance	to	the	closest	defender	at	shot	time	𝛿&)#"*
∗ 	function	of	release	time.	Vertical	dashed	

line	shows	median	release	time	over	all	catch-and-shoot	shots	while	horizontal	dashed	lines	delimit	
degrees	of	a	shot	opening	defined	by	NBA	stats	website	[16]:	very	tight,	tight,	open	and	wide	open	
above	the	thickest	dashed	line.	Hits	and	miss	are	respectively	associated	with	blue	and	red	dots.		
	
5.4. 	Analysis	of	a	Shot	
Figure	10	illustrates	the	step-by-step	analysis	of	a	single,	catch-and-shoot	3-point	shot	by	Thompson.	
This	is	an	example	where	the	shooter	has	to	free	himself	from	his	defender	to	be	able	to	receive	the	
ball.	At	the	beginning	of	the	action,	Thompson	is	guarded	by	two	players	(Figure	10	(a))	which	is	
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confirmed	by	 respective	 values	 of	𝛿&)#"*∗ 	 and	𝛿$01*∗ 	 4	 feet	 and	0.4	 second.	Then,	Thompson	 frees	
himself	 from	defenders	not	 only	 thanks	 to	his	 step	backward	but	 also	 to	Curry’s	movement	 that	
attracts	defenders	(Figure	10	(b)).	Finally,	he	attempts	the	shot	and	succeeds	with	a	release	time	of	
0.5	second	and	the	closest	defender	at	5	feet	or	0.4	second	at	shot	time.	This	is,	therefore,	an	open	
shot	taken	rapidly.	

	 	 	

	
(a)	

	
(b)	

	
(c)	

Figure	 10:	Analysis	 of	 Thompson	 catch-and-shoot	 shot.	 In	 (a),	 2	 seconds	 before	 the	 attempt,	
Thompson	is	guarded	by	two	players.	In	(b)	Thompson	frees	himself	from	defenders	thanks	to	a	
step	backward	and	Curry's	movement	that	attracts	defenders.	(c)		Shot	time.	

A	detailed	video	shows	the	evolution	of	the	free	space	in	real-time	as	well	as	the	animation	of	the	
occupation	map	like	the	one	illustrated	in	Figure	2(b)	:		

https://amigocap.github.io/MecaSportStats/video.mp4.	

6. Conclusion	and	Perspectives	
In	this	section,	we	summarize	our	contribution	and	main	takeaways	based	on	the	occupation	models	
we	 introduced	 in	 this	 paper.	 Visual	 analysis	 reveals	 that	 the	 dynamic	 model	 is	 a	 better	 way	 to	
characterize	 court	 occupation.	 A	more	 detailed	 quantitative	 comparison	 enabled	 to	 quantify	 the	
inertia	with	a	measurable	time-lag	in	the	defensive	dynamics.	We	have	computed	this	time-lag,	which	
is	of	the	order	of	0.3s	focusing	on	3-point	attempts	and	1.26s	for	the	global	team	behavior,	which	is	a	
fairly	important	amount	of	time	in	a	high-frequency	sport	such	as	basketball.		

The	 study	 of	 3-point	 shooters	 free	 space	 evolution	 3	 seconds	 before	 shot	 time	 revealed	 three	
different	behaviors.	Firstly,	we	noticed	that	catch-and-shoot	attempts	require	more	free	space	than	
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pull-up	ones	as	the	player	needs	time	to	catch	the	ball	before	taking	his	shot.	Secondly,	we	were	able	
to	differentiate	two	types	of	catch-and-shoot	shots	as	some	of	them	ask	the	shooter	to	free	himself	
from	defenders	while	he	can	only	stay	in	his	position	when	he	is	free	enough	both	to	receive	and	
shoot	the	ball	three	seconds	before	the	attempt.	

Then,	considering	shot	accuracy,	we	were	able	to	determine	key	values:	when	the	closest	defender	is	
within	6	feet	or	0.4s	the	percentage	of	success	decreases	drastically.	

Eventually,	the	study	of	16	individual	behaviors	reveals	that	some	players,	like	Matthews,	adapt	their	
release	 time	 to	 the	 free	 space	 they	 have	when	 they	 catch	 the	 ball	while	 others	 prefer	 to	 keep	 a	
constant	release	time.	We	were	also	able	to	note	that	some	players	only	take	their	chance	if	they	have	
enough	free	space	at	time	catch	while	players	like	Curry	can	shoot	even	if	they	are	closely	guarded.	
Finally,	a	focus	on	release	time	indicates	that	players	with	a	success	rate	higher	than	40%	are	always	
able	to	shoot	quicker	than	average	suggesting	it	is	a	necessary	condition	to	be	a	good	shooter.	

The	main	perspective	for	our	work	is	to	take	into	account	in	our	models	the	players’	characteristics	
such	as	their	height,	speed	or	endurance.	This	will	require	additional	meta-dataset	to	be	combined	
with	SportVU	data.	We	sought	to	look	at	the	correlation	between	types	of	shots	and	de-aggregated	
data	over	space	and	time,	e.g.	shot	clock,	current	score	or	decisive	game	or	not.	Another	improvement	
of	our	model	is	to	take	into	account	the	direction	of	the	nearest	defender	in	addition	to	his	distance	
since	a	defender	not	on	the	firing	line	has	less	influence	on	the	shooter's	performance.	

We	 release	 code	 and	 analysis	 as	 an	 open-source	 project	 with	 a	 permissive	 license	
https://github.com/AmigoCap/MecaSportStats		to	support	further	research	and	application	of	those	
models.	In	particular	we	are	interested	in	applying	those	models	to	transportations	systems	in	cities,	
to	let	urban	planners	optimize	bus	and	metro	lines	locations	and	schedules	based	on	the	share	of	
population	they	cover.		
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Appendix	
We	want	to	compute,	for	a	moving	player	on	a	domain	how	much	time	it	takes	to	reach	a	point	
(𝑥, 𝑦).	Without	loss	of	generality,	we	will	determine	the	time	it	takes	for	a	player	at	a	given	position	
and	with	a	given	speed	to	reach	the	point	(𝑥, 𝑦) = (0,0).		Initially	the	velocity	of	the	player	at	
position	(𝑥(0), 𝑦(0))	is	(𝑢(0), 𝑣(0)).	We	will	consider	that	the	player	will	use	a	constant	force	(per	
unit	mass)	in	a	given	direction,	of	strength	|𝐹|E = 𝐹UE + 𝐹8E.	This	is	an	assumption	which	allows	to	
find	a	simple	analytical	solution.	In	particular,	it	allows	to	consider	the	two	directions	separately.	

Newton's	law	writes:	

	 𝑑$E𝑥 = 𝐹U	 (6) 	

so	that	we	have:	

	 𝑥(𝑡) = 𝑥(0) + 𝑢(0)𝑡 +
1
2
𝐹U𝑡E	

(7) 	

We	evaluate	this	expression	at	𝑥 = 0	and	want	to	determine	at	which	time	this	point	is	reached.	Let	
us	first	determine	the	force	per	mass	𝐹U ,	

	
𝐹U = −2

𝑥(0) + 𝑢(0)𝑡
𝑡E

	
(8) 	

Analogous	expressions	to	(6)-(8)	are	written	for	𝑑$E𝑦,	𝑦(𝑡)	and	𝐹8 .	Since	|𝐹|E = 𝐹UE + 𝐹8E,	we	have,	

	
𝐹E =

4
𝑡E
WX
𝑥(0) + 𝑢(0)𝑡

𝑡E
Y
E

+ X
𝑦(0) + 𝑣(0)𝑡

𝑡E
Y
E

Z	
(9) 	

Yielding	a	4$%order	polynomial	for	t,	

	
𝑡E −

4
𝐹E
WX
𝑥(0) + 𝑢(0)𝑡

𝑡E
Y
E

+ X
𝑦(0) + 𝑣(0)𝑡

𝑡E
Y
E

Z = 0	
(10)	

This	equation	has	formally	4	solutions.	However,	only	one	of	these	is	the	shortest	physical	time	for	a	
player	to	reach	the	origin.	The	constraints	to	choose	the	correct	solution	are	that	the	time	needs	to	
be	the	smallest	positive	and	real	root	of	equation	(10).	

The	 present	 model	 contains	 one	 adjustable	 control	 parameter,	 the	 value	 of	 𝐹.	 A	 previous	
investigation	[4]	suggests	that	the	value	of	𝐹	should	be	of	order	10m/s.		
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In	 principle,	 since	 we	 have	 not	 bounded	 the	 velocity	 of	 a	 defender	 and	 fixed	 its	 acceleration,	
nonphysically	large	velocities	can	be	developed.	Thereto	in	a	previous	model	[4]	the	dynamics	were	
refined	introducing	a	drag,	which	limits	the	increase	in	velocity.	However,	for	the	present	application,	
the	time	it	takes	for	a	defender	to	reach	a	shooter	rarely	exceeds	1	second,	so	that	the	velocities	do	
not	reach	non-physical	values.	Therefore,	and	for	the	sake	of	simplicity,	we	have	chosen	not	to	refine	
the	model	any	further.	


